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IRREGULAR BEHAVIOUR OF CLASS NUMBERS AND
EULER-KRONECKER CONSTANTS OF CYCLOTOMIC
FIELDS: THE LOG LOG LOG DEVIL AT PLAY

PIETER MOREE

ABSTRACT. Kummer (1851) and, many years later, Thara (2005)
both posed conjectures on invariants related to the cyclotomic field
Q(¢,) with ¢ a prime. Kummer’s conjecture concerns the asymp-
totic behaviour of the first factor of the class number of Q((,) and
Thara’s the positivity of the Euler-Kronecker constant of Q(¢,) (the
ratio of the constant and the residue of the Laurent series of the
Dedekind zeta function (g, (s) at s = 1). If certain standard con-
jectures in analytic number theory hold true, then one can show
that both conjectures are true for a set of primes of natural density
1, but false in general. Responsible for this are irregularities in the
distribution of the primes.

With this survey we hope to convince the reader that the ap-
parently dissimilar mathematical objects studied by Kummer and
Thara actually display a very similar behaviour.

1. INTRODUCTION

Making conjectures in analytic prime number theory is a notori-
ously dangerous endeavour(} certainly if the basis for this is mostly
of numerical nature. The danger lies in the fact that computers can
barely spot log log terms and are certainly blind to the loglog log terms
that frequently occur. The presence of such terms can result in the
conjecture being false on very thin subsequences. Celebrated exam-
ples are the m(z) < Li(z) conjecture and the Mertens conjecture that
1>, <. i(n)] < /& for n > 1 (for notation see Section . Both
of them are false, but true up to gigantic values of . A way out of
the danger zone is to change “for all” to some slightly weaker state-
ment. However, this requires a substantial theoretical insight into the
conjecture.

2010 Mathematics Subject Classification. 11N37, 11Y60, 11M20.

n fact, the title of this paper ends with a question mark. Since it is considered
very bad style to have it in the title of a paper, this footnote might be a better
place. Not putting the question mark would go against the moral of this paper.
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Here we present two further conjectures (due to Kummer and Thara
respectively) where the phenomena indicated above also seem to arise.
The final verdict on them is still open but, assuming some standard
conjectures from analytic number theory, they are false on some very
thin sequences of primes due to irregularities in the distribution of the
primes. At a first glance the two conjectures look unrelated. However,
they are both connected with the distribution of special L-values and
the results and conjectures we present on them are strikingly Similarﬂ.

In the remaining part of the introduction we formulate the conjec-
tures (after stating some background material) and discuss how they
are related to special L-values. In the rest of the paper we discuss
results and related conjectures.

Although results from various papers are mentioned in this sur-
vey, our main inspiration are Ford, Luca and Moree [7] for the Euler-
Kronecker constant and Granville [11] for Kummer’s conjecture. Euler-
Kronecker constants for non-quadratic fields were put on the mathe-
matical map mainly thanks to the efforts of Thara [15] [16, [17].

1.1. The Euler-Kronecker constant for number fields. For a
number field K we can define, for Res > 1, the Dedekind zeta function

by
1 1
Ck(s) = ; Naw 1;[ T-Np+

Here, a runs over the non-zero ideals in O, the ring of integers of K, p
runs over the prime ideals in Ok and Na is the norm of a. It is known
that (x(s) can be analytically continued to C — {1}, and that at s = 1
it has a simple pole and residue ag. The prime ideals having prime
norm are of particular importance as they are the cause for this pole.

After a suitable normalisation with gamma factors, one obtains from
Ck(s) a function (k(s) satisfying the functional equation

Cx(s) = Cr(1 = 9).

Since ¢ K (s) is entire of order 1, one has the following Hadamard product
factorization:

() Giels) = e T (1= 2 )

p P

with Sk € C and where p runs over the zeros of (x(s) in the critical
strip.

2The similarity was first noted by Andrew Granville, see acknowledgment.
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Around s = 1 we have the Laurent expansion

2)  Cx(s) = SO‘_—Kl Vg +e(K)(s— 1)+ ea(K)(s — 1)2+....
The constant vx = ci/ak is called the Euler-Kronecker constant
in Thara [15] and Tsfasman [35]. In particular, we have c¢g = v =
0.57721566 . . ., the Euler-Mascheroni constant, see e.g. Lagarias [20)]
for a wonderful survey of related material. In case K is imaginary qua-
dratic, the well-known Kronecker limit formula expresses v in terms
of special values of the Dedekind n-function.

An alternative formula for v is given by

/
Ck(s) i 1 >7
Ck(s) s—1

which shows that vk is the constant part in the Laurent series of the
logarithmic derivative of (x(s). Using the Hadamard factorization
one can relate g to the sum of the reciprocal zeros of (k(s), cf. [
p. 1452]. Indeed, in a lot of the literature the logarithmic derivative
of the right hand side of is the starting point in studying yx. The
main tool of Thara, cf. [I5 p. 411], is an “explicit” formula for the
prime function

1 T
O (z) = (— — 1) log N 1,
prx

(3) i = lim (

relating it to the zeros of (x(s).

Given any Dirichlet series L(s) with a pole at s = 1, we can define
its Euler-Kronecker constant as the constant part in the Laurent series
of its logarithmic derivative (if this constant exists). In Moree [25] this
is considered in case when S is a multiplicative set of integers (that is,
for coprime integers m and n one has mn € S if and only if both m and
n are in §) and Lg(s) = Y, .gn~* is its associated Dirichlet series.

Another alternative formula for vx is given by

(4) vx = lim <logac— Z 10ng>.

T—00 Npex Np —1

This result is due to de la Vallée-Poussin (1896) in case K = Q and can
be easily generalized to other number fields and settings, cf. [12, [13].

Thara [I5, Theorem 1 and Proposition 3] proved that GRH (Conjec-
ture @ below) implies that there are absolute constants ¢y, ¢y > 0 such
that

(5) —cplog|di| < vk < cologlog|dk|,
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where df denotes the discriminant K/Q. Tsfasman [35] showed that
the above lower bound is sharp, namely, assuming GRH he proved that

K
> —0.13024 . . .,
log |dg| —
where we range over the number fields K with |dx| — oo. Later

Badzyan [3] proved that one can take ¢; = (1 — 1/4/5)/2 ~ 0.276393.
It is an open problem whether this is sharp.

lim inf

1.2. The Euler-Kronecker constant for cyclotomic fields. It is
a natural question to ask how the Euler-Kronecker constant varies over
families of number fields such as quadratic fields and (maximal) cyclo-
tomic fields. After quadratic fields, cyclotomic fields have been most
intensively studied (see [21L [36] for book length treatments). Many
of the associated quantities of a cyclotomic field Q((,,) are explicitly
known. Relevant examples for us are their ring of integers, Z[(,,], and
their discriminant

(n)
(6) do(c,) = (~1)?2pe T p~ o

Moreover, the splitting of a rational prime p into prime ideals in Z[(,,]
of a cyclotomic field follows an easy pattern, see e.g. [31, Theorem
4.16], which we recall here.

For p a prime not diving the integer m, we define ord,(m) to be the
(multiplicative) order of p in (Z/mZ)*

Lemma 1 (Cyclotomic reciprocity law). Let K = Q((,,). If the prime
p does not divide m and f = ord,(m), then the principal ideal pOk
factorizes as py---p, with g = p(m)/f and all p; are distinct and of
degree f.

Howewver, if p divides m, m = p*my with p{ my and f = ord,(my),
then pOg = (p1---p,)¢ with e = p(p*), g = p(m1)/f and all p; are
distinct and of degree f.

For notational convenience we will write -, instead of vg(,). Our
main focus is on the case where m = ¢ is a prime (unless specified
otherwise, m denotes a positive integer and p and ¢ primes). Then we
have

(7) Cagn () = ¢(s) T Lls.),
X7#X0
where y ranges over the non-trivial characters modulo ¢, leading to

®) wq=v+2%.

X7X0
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Thus the behaviour of v, is related to that of L(s,x) and L'(s, x) at
s = 1. (Here and in the rest of the paper we often use the fundamental
fact that L(1,x) # 0.)

Let Q(¢,,)" denote the maximal real subfield of Q((,,) and ;! its
Euler-Kronecker constant. In that case we find

(9) Gawe+(5) =¢(s) I Ls.n).

XFXO0
x(=1)=1

Logarithmic differentiation of the latter product identity then yields

L'(1, x)
10 = — 0
o KR Y iy
0
x(=1)=1

1.3. Thara’s conjecture. Thara made a conjecture on 7,, based on
numerical observations for m < 8000, which we here only formulate in
case m = ¢ is prime.

Conjecture 1 (Thara’s conjecture [16]). Let ¢ > 3 be a prime.
1) 74 > 0 (‘very likely’);
2) For fized € > 0 and q sufficiently large we have

1
2 logqg = 2
The most extensive computations on 7, to date were carried out by
Ford et al. [7].

fe T+ 1
T + F s it T
TRl b P T e, T A ELF T e
+++§ R ﬁfkw{* e %1¢ R L W
i A i LS A St e T, T LY
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+
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Scatterplot of ~,/log ¢ for ¢ < 50000

The largest value of v,/logg among ¢ < 30000 equals 1.626... and
occurs at ¢ = 19. The smallest is 0.315... and occurs at ¢ = 17183.
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It is a consequence of , @ and Badzyan’s result mentioned above
that, under GRH, there exists a constant ¢, > 0 such that

(11) — (1—1/V5)q(log q)/2 < 7, < chlogq.

Ihara [15] showed that v, < (24 0(1)) log ¢ assuming ERH (Conjecture
below). The lower bound in turns out to be very weak. Ihara
et al. [I8] proved that for any € > 0 one has |y,| = O.(¢°) and, under
GRH, |7,| = O(log® q). We will see in Section [3| that these bounds can
be sharpened considerably.

1.4. Kummer’s conjecture. Let hi(q) be the ratio of the class num-
ber h(q) of Q(¢,) and the class number hs(q) of its maximal real subfield
QG + ¢, 1), that is, hi(q) = h(q)/h2(q). Kummer proved that this is
an integer. It is now called the first factor of the class number of h(q).

In 1851 Kummer [I9] published a review of the main results that
he and others had discovered about cyclotomic fields. In this elegant
report he made the following conjecture.

Conjecture 2 (Kummer’s conjecture [19]). Put

G(q) = (é)u and r(q) = 2((;]))

Then asymptotically r(q) tends to 1.

In fact he claimed to have a proof that he would publish later to-
gether with further developments (but never did). Kummer himself
laboriously computed r(gq) for ¢ < 100. This was extended over time
by many authors, more recently by Shokrollahi [33]. He showed that
the largest value of r(¢) among ¢ < 10000 equals 1.556562. .. and oc-
curs at ¢ = 5231. The smallest is 0.642429 ... and occurs at ¢ = 3331.

In 1949 Ankeny and Chowla [I} 2] made some progress by showing
that

(12) log7(q) = o(log q).

Siegel [34], who was unaware of the earlier work of Ankeny and Chowla,
proved a weaker version of and was one of the first to cast doubt
on the truth of Kummer’s conjecture. From ([12)) we infer that

q
log hy(q) ~ 1 log q,

and thus that there are only finitely many primes ¢ such that Q(¢,) has
class number one. This was made effective by Masley and Montgomery
[22], who showed that |logr(q)| < Tloggq for ¢ > 200, which is strong
enough to establish Kummer’s conjecture that hq(¢) = 1 if and only if
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q < 19. This result is their key ingredient in determining all cyclotomic
fields having class number 1. In proving their upper bound, Masley
and Montgomery used zero-free regions of L-functions. This idea was
refined by Puchta [32], with a further improvement by Debaene [5], to
obtain an upper bound for logr(q) that depends on a Siegel zero, if it
exists.

Not surprisingly h; is eventually monotonic; however, no beginning
prime is yet known. In this direction Fung et al. [9, Theorem 1] showed
that if F is an elliptic curve over QQ for which the associated L-function
has a zero of order at least 6 in s = 1, then it is possible to find an
explicit prime ¢o for which hy(g2) > hi(q1), whenever ¢o > q1 > qo. It
is believed that one can take ¢y = 19.

Just like 7, in (§)), h1(g) is also related to special values of Dirichlet
L-series. Hasse [14] showed that

(13) o=-gb= T o,
x(—1)=-1

where the product is over all the odd characters modulo ¢. It follows

from this, and @ that

s
r(q) = lim —CQ(CQ)( ) .
541 CQ(Cq)+<8)
Indeed, using the definition of Euler-Kronecker constant we find the
Taylor series expansion around s = 1

SO, )1+ 34— 4)(5 1)+ Oylls ~ 1)),
S+ ()

involving both of the main actors of this surveyf’}

(14)

1.5. Similarities between the two conjectures. The remaining
part of this survey will make clear that the quantities

Vq
15 — and 1 —2|logr
(15) e [log r(q)
have very similar analytical properties. Indeed, this analogy implies
that the Euler-Kronecker analogue of the Kummer conjecture is that
asymptotically

vq ~ logg.

The numerical computations mentioned above suggest that both quan-
tities in ((15) are bounded, whereas if one believes in some standard
conjectures in analytic number theory (delineated in the next section),

3[ have not come across this formula in the literature.



8 PIETER MOREE

they can be sporadically very negative. Various researchers in this area
believe that it is the logloglog devil that ruins both the Kummer and
Thara conjecture (see Section [f]).

2. PRELIMINARIES

2.1. Standard conjectures used. The results we are going to present
depend on some standard conjectures on the prime distribution that
we briefly recall in this section.

Let A = {ay,...,as} be a set consisting of s distinct natural num-
bers. We define
~ 1
k=1 "

The set A is said to be admissible if there does not exist a prime p
such that p|n[[;_,(a;n + 1) for every n > 1. Note that if there is
such a prime factor p, then p < s+ 1. The sequence {a(i)}2, =
{2,6,8,12,18,20,26,30,32,...} has the property that any finite sub
sequence is an admissible set. It is called “the greedy sequence of
prime offsets” and is sequence A135311 in the Online Encyclopedia of
Integer Sequences (OEILS).

Conjecture 3 (Hardy-Littlewood). Suppose A = {aq,...,as} is an
admissible set. Then the number of primes n < x such that the integers
an+1,...,a;n+1 are all prime is >4 xlog 5 ' x.

Actually, the full Hardy-Littlewood conjecture gives an asymptotic,
rather than a lower bound. It is this full version that was used by
Croot and Granville [4] to study how many primes ¢ < x satisfy r(q) =
a+ o(1), with a > 0 and fixed.

As usual, we let 7(x;d,a) denote the number of primes p < z sat-
isfying p = a (mod d), w(x) the prime counting function, Li(z) the
logarithmic integral and p the Mobius function.

Conjecture 4 (Elliott-Halberstam). For any ¢ > 0 and C > 0 we
have
Li(z) x
k) — ——| <o ——=-

o(k)

Conjecture 5 (Extended Riemann Hypothesis). Every Dirichlet series
L(s, x) satisfies the Riemann Hypothesis.

Conjecture 6 (Generalized Riemann Hypothesis). Every Dedekind
zeta function (x(s) satisfies the Riemann Hypothesis.
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In places where one uses GRH for a general number field, for a cy-
clotomic number field ERH suffices, as their Dedekind zeta function
decomposes as a product of Dirichlet L-series, cf. .

For most results quoted below a weaker form of these conjectures
suffices. For reasons of brevity we leave out the details and refer the
reader to the original publications. Also for brevity we will refer to
the above conjectures by the abbreviations HL, EH, ERH and GRH,
respectively.

2.2. The distribution of m(A). Crucial for obtaining results on both
the Kummer and the Thara conjecture is an understanding of the dis-
tribution of m(A) as A ranges over the admissible sets. We put
M = {m(A) : A is admissible} and let M be the closure of M,
that is, the set of limit points of sequences of elements of M that do
converge.

Granville showed that the following 1988 conjecture by Erdds is trueE].

Theorem 1 (Granville [I1]). There is a sequence of admissible sets
Ay, As, ... such that lim;_oo m(A;) = oo.

Corollary 1. We have M = [0, o0].

Proof. Given any x > 0 and > 0, there is an admissible set A
with m(A) > x consisting of integers all > 1/0. As any subset of
an admissible set is also admissible, there is a subset A’ of A with

Im(A") — x| < 4. O

Another issue is that of finding admissible subsets A C [1, z] having
large m(A). In this direction Granville proved the following result.

Proposition 1 (Granville [11]).

1) For any sufficiently large x there is an admissible set A, which is a
subset of [1, x|, with m(A) > (1 +o(1))loglogz.

2) There exists a constant ¢ > 0 such that if A is an admissible subset
of [1,z], then m(A) < cloglog x.

Granville believes one can take ¢ = 1 + ¢, for any € > 0, provided
that x is sufficiently large. If true, this would imply that part 1 is best
possible.

4The authors of [7], unaware of Granville’s work and the fact that they were
dealing with a(n) (ex-)conjecture of Erdds, gave a short different proof using a 1961
paper of... Erdds [6] himself!
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3. THE CONSTANTS 7,: RESULTS AND CONJECTURES
On applying and Lemma 1| we obtain

(16) 'Yq:—logq—S(Q)—lim (10gaf—(q—1) > logp>,

q— 1 T—00 p<w p— 1
p=1 (mod q)
where
log p
S@W=@-1 Y e
pP#£q
ordp(q)>2

By Lemma (1| the only rational primes splitting into prime ideals of
prime norm are ¢ and all the primes p = 1 (mod ¢). They are responsi-
ble for the first, respectively third term on the right hand side of .
The term S(q) is the contribution of the prime ideals lying above the
remaining rational primes. Using estimates for linear forms in loga-
rithms, it can be shown that S(¢) < 45 and even that for any fixed
e > 0 we have S(q) < € for (1 + o(1))n(z) primes ¢ < z [7, Theorem
3]. Since, as we will see, v, has normal order log g, it follows that the
first two terms in are error terms.

The idea now is to approximate v, by choosing a suitable value for x
in . In principle one wants to have x small, but the irregularities in
the distribution of the primes do not allow us to take x too small. The
Bombieri-Vinogradov theorem allows us to take x = ¢ for any 6§ > 0
with the possible exception of a thin set of primes. Using the Brun-
Titchmarsh inequality one can bring this down to x = ¢?. Likewise,
assuming EH one can go down to z = ¢'*°. This approach leads to the
following result.

Lemma 2 (Ford et al. [7]). Given r > 1 write

log p

17 E.(qg)=~,—rl )

(17) (q) =g —rlogg+gq EU —
pElp(rr;Iodq)

1) For all C' > 0 we have Es(q) = Oc(loglog q), with at most O((l;rg(?)c)
exceptions q < x.
2) Assuming EH, we have for fized ¢ > 0 and C > 0 that E1..(q) =

Oc(loglog q), with at most O(U;;(z))c) exceptions q < x.

3) Assuming ERH, we have Es(q) = O(loglogq).

Before we consider how the large the prime sum in ((17)) with 0 <
r < 2 can be, we remark that it is usually small.
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Proposition 2 (Ford et al. [7]). Uniformly for z > 2, § > 0 and
0 < e <1, the number of primes q < x for which

log p
—=>51
g D 1 20 logd
p<qlte
p=1 (mod q)

is O(em(x)/9).

How small 7, can be is determined by how large the prime sum in

can be.

Proposition 3. There exists an absolute constant ¢ > 0 such that on
a set of primes of natural density 1 we have

Yq
log q

—cloglogq < < (24 ¢)logg,
with € > 0 arbitrary and fized.
Under ERH these estimates hold for all primes q large enough.

Proof. On writing the primes p = 1 (mod ¢) that satisfy p < ¢* as
a1q+1,...,as,q+ 1, and noting that A := {ay,...,as} is an admissible
set, we obtain by Proposition [1| that

lo
q E g]; < 2m(A)log q < log qloglogg.
p<q? p=
p=1 (mod q)

Now the unconditional statement is obtained on invoking part 1 of
Lemma 2

Under ERH the upper bound is due to Thara [15] and the lower bound
to Badzyar[] [3]. O

In the next section we will see that for r = 2 the prime sum in ((17))
can be quite large if we assume HL.

3.1. Assuming HL. Armed with HL and Lemma 2 it is easy to give
a conditional disproof of part 1 of Ihara’s conjecture.

Theorem 2. Suppose that HL is true and that A is an admissible set.
Then one has

Vg < (2 =m(A)+o(1))logq
for > xlog #A  & primes ¢ < x.

SHe assumes GRH. The reproof given in [7, p. 1470] shows that ERH is sufficient.



12 PIETER MOREE

Proof. Let aq,...,as be the elements of A. By HL there are infinitely
many primes ¢ such that infinitely often a1q + 1,...,a,q + 1 are all
prime and in addition a,q + 1 < ¢?. Then

s

log p log q
¢ D L1 E » = m(A)loggq.
p<q? =1

p=1 (mod q)

The proof now easily follows from the part 1 of Lemma [2] with any
C > s. O

A computer calculation gives that A = {a(1),...,a(2088)} satisfies
m(A) > 2, where a(1),a(2),... is the sequence of integers introduced
in Section 2.1} We thus obtain the following corollary of Theorem [2]

Corollary 2. Assume HL. Then part 1 of Ihara’s conjecture is false
for infinitely many primes q.

Unconditionally we only have the following result.

Theorem 3 (Ford et al. [7]). We have Yopaarro01 = —0.1823 ..., and
so part 1 of Thara’s conjecture is false for at least one prime q.

This looks perhaps easy, but was made possible only by a new, fast
algorithm developed by the authors of [7] (it requires computation of
L(1, x) for all characters modulo ¢). The prime ¢ = 964477901 has the
property that ag+1 is prime for a € {2,6,8, 12,18, 20, 26, 30, 36, 56, . . .}.
It is easy to approximate the above value of 7, by taking a large z in
formula ([16). The authors of [7] believe that if there is a further ¢ with
7q < 0, then its computation will be hopelessly infeasible.

Since by Theorem [1]one can find admissible A with m(.A) arbitrarily
large, we obtain the following result from Theorem [2

Theorem 4 (Ford et al. [7]). Assume HL. Then

lim inf —4
q— logq

= —0OQ.

Thus, conditionally, 7, can be very negative. This happens not fre-
quently since Mourtada and Kumar Murty [27] showed unconditionally
that the set of primes ¢ < x such that 7, < —11logq is of size o(n(z)).
In Section 5| we speculate how negative 7, as a function of ¢ can be.

3.2. Assuming EH (and HL). The prime sum in cannot be
too small by Proposition [2| and on invoking the part 2 of Lemma [2] we
obtain the following result.
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Theorem 5 (Ford et al. [7]). Assume EH. Let € > 0 be arbitrary. For
a density 1 sequence of primes q we have

Yq
log g
This describes the situation for the bulk of the primes. However, if

one assumes in addition HL, one can say something about the irregular
behaviour.

1l—e< <l+4e.

Theorem 6. Suppose that both EH and HL are true. If A is an ad-
missible set, then one has

Vg = (1 =m(A) +o(1))logq
for >4 xlog A & primes ¢ < z.

Sketch of proof. By reasoning as in the proof of Theorem [2| we obtain
Y < (1 —m(A) + o(1))logq. The reverse inequality is obtained on
using sieve methods to find enough primes ¢ < x with ga + 1 prime
for a € A and not prime for a € A and a < ¢, see [1, p. 1465] for
details. U

Now using that M = [0, 00] (Corollary , we obtain the following
result.

Theorem 7 (Ford et al. [7]). Assume EH and HL. Then the set
O = { Ja_ . q prime}
log g

We propose the following conjecture.

is dense in (—oo, 1].

Conjecture 7. Let A be any admissible set. If EH and HL are both
true, then 1 —m(A) is a limit point of the set ©.

3.3. Cyclotomic Euler-Kronecker constants on average. Kumar
Murty [29] proved unconditionally that

D Il < (m(Q) — 7(Q/2)) log Q.
Q/2<q<Q
Fouvry [8] showed that uniformly for M > 3 one has the equality
1
7 2. |l =logM +O(loglog M),
M/2<m<M

if one ranges over the integers m, rather than the primes q.
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4. THE KUMMER CONJECTURE: (CONDITIONAL) RESULTS
The orthogonality property of characters gives us

Z IOgL(‘S?X) = % Z j:m;ms’

x(=1)=-1 p™==1 (mod q)

where the latter notation is shorthand for

1 1
> oLy

mpms ’
p™=1 (mod q) p™m=—1 (mod q)

From Hasse’s formula we have that
q—1 . 1 1
W mw-Tm (Tl y <)

pMm<azx

p™==£1 (mod q)

We denote the limit by f,. Note that Kummer’s conjecture is equivalent
with f, = o(1/q). Formula should be compared to formula ((16)).
As in that formula, one tries to choose = as small as possible so that
the resulting error is still reasonable. In doing so, also here Bombieri-
Vinogradov theorem and Brun-Titchmarsh inequality come into play.
The main contribution to f, comes from the term with m = 1. Taking
all this into account, Granville [IT] showed that if Kummer’s conjecture
is true, then for every ¢ > 0 we must have

1 1
5 ool
p<qltd p q

p==%1 (mod q)

for all but at most < z/log® z primes ¢ < .
Using this approach Granville showed that

lje<r(g)<c
for a positive proportion p(c) of primes p < x, where p(c) — 1 as

¢ — 0o. Ram Murty and Yiannis Petridis [28] improved this as follows.

Theorem 8. There exists a positive constant ¢ such that for a sequence
of primes with natural density 1 we have

ct'<r(g) <e
If EH 1is true, then we can take c = 1+ ¢ for any fived € > 0.

Thus Ram Murty and Yiannis Petridis showed that a weaker version
of Kummer’s conjecture holds true. Yet, if both EH and HL are true,
Kummer’s conjecture itself is false and, moreover, we have the following
much stronger result.
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Theorem 9 (Granville [11]). Put
Q={r(q) : q is prime}.
Assume both HL and EH. Then the sequence 2 has [0,00] as set of
limit points.
This result follows from Corollary [1| and the following.

Theorem 10. If EH and HL are both true, then, for any admissible
set A, the numbers e™ A2 and e=™N/2 qre both limit points of €.

5. THE LOG LOG LOG DEVIL UNLEASHED

Regarding the extremal behaviour of r(g) and v,/ log ¢, we enter the
realm of speculation, following Granville [T1], Section 9].

Speculation 1 (Granville [I1]). For all primes q, we have
(19) (=14 o0(1))logloglogq < 2logr(q) < (1+ o(1))logloglog q.

These bounds are best possible in the sense that there exist two infinite
sequences of primes for which the lower, respectively upper bound are
attained.

The same line of thought for +, gives rise to the following speculation.

Speculation 2. For all primes q, we have

(20) lové > (—=1+o0(1))loglogloggq.

The bound is best possible in the sense that there exists an infinite
sequence of primes for which the bound is attained.

We will now sketch the motivation for these two speculations and
do this in parallel, to bring out the analogy in the reasoning more
clearly. The speculations require the assumption that primes are both
more regularly and more irregularly distributed than can be currently
established.

For convenience let us write Ly = loglog ¢ and L3 = logloglog q. We
assume that there exists an absolute constant A > 0 for which we can
take z = g(log ¢)* in (16), such that the estimate

log p
(21) =lgg—q Y, —-+E)
pgf((logg)"‘) p

with E(q) = o(Lszlog q) holds true. Now note that

S M (R )]

p<q(log q)4 p<q(log q)4
p=1 (mod q) p=1 (mod q)
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where we used that the logp appearing on the left hand side of
satisfies logp = log ¢ + O(Ls). Combining and then yields

L E
(23) -1 g(1+()A<—2>>+ﬁ.
log q 2q—1<p<q(log 9)3 p lOg q log q
pzil (;'\od q)

Granville [I1], p. 335] makes some speculations about the distribution of
prime numbers that would ensure that one can go down to x = ¢(log ¢)?
in the Kummer problem and lead tdf

g—1 1 1
(24) ogr(e) = 1= Y i;JrO(\/m).

p<q(log q)3
p==£1 (mod q)

By the Brun-Titchmarsh theorem there exists a constant ¢ > 0 such
that for all x > 2¢ — 1 we have
x

(q —1)log(z/q)

max{m(z;q,—1),m(z;¢, 1)} <c
Using this it is easy to deduce that

(25) S <l 0.

2q+1<p<q(log 9)A q
p=1 (mod q)
Combining this estimate with gives
E

(26) a5y = ery 1 041) + 2.

log q log q
Similarly, combining with A = 3 and yields
(27) logr(q) < cL3/2+ O(1).

It follows from that

¢—1 1 1
logr(q) = 5 Z ]—9+ O<m>7

2¢—1<p<q(log q)3
p=—1 (mod q)

and a similar argument as before now yields
(28) logr(q) > —cLs/2 + O(1).

Montgomery and Vaughan [24] have shown that we may take ¢ = 2
and it is conjectured that one may take ¢ = 14 o(1). If this is so, then
combining With yields . Likewise, gives rise to the
lower bound ([20)).

The final step is to argue why the bounds and are best
possible. We will only do so for the easier case of the bound . We

6 Having the larger error term o(Ls) would also suffice for our purposes.
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assume the Hardy-Littlewood conjecture in a stronger form, namely in
its original asymptotic form. Then one can argue that for any admis-
sible set A with elements < z, we only find enough primes ¢ for which
p = qa + 1 is prime for all a € A if ¢ > 2'% and z is large enough.
This in combination with the part 1 of Proposition [1] then suggests that
there are infinitely many primes ¢ for which

(29) Z 1 > (1— 5)&‘

2q+1<p<q(log q)4
p=1 (mod q)

This estimate, together with and the already obtained lower bound
, then finishes our argumentation.

These two speculations taken together imply the following weaker
one.

Speculation 3. There exists a function g(q) such that

lim inf —%— — 2lim nf 12579
= g(q)logq = g(q)
In case g(q) is not the logloglog devil from the title, it is certainly
a close cousin!
Comparison of Conjecture 7| and Theorem [10| suggests that v,/ log ¢
and 1 — 2|logr(q)| behave similarly, which is consistent with the three
speculations presented in this section.

< 0.

6. PROSPECT

6.1. Polymath. Recent progress on gaps between primes allows one
to meet the challenge below for some C' > 0. Indeed, according to
James Maynard [23], recent results allow one to take C' = 1/246.

Challenge 1. Find a set A ={ay,...,as} such that provably for some
B > 0 there are > x/log® x primes ¢ < x such that a;q+1, ..., a,q+1
are all prime and, in addition,

S

2520,

i=1 "
with C' as large as possible.

Conjecturally C' can be taken arbitrarily large, cf. Theorem [I}

Proposition 4. If one meets the challenge for any C' > 2, then there
are > x/log? x primes ¢ < x for which part 1 of Ihara’s conjecture is
false and, moreover, v, < (2 — C)loggq.

Proof. Similar to that of Theorem O
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6.2. Kummer for arbitrary cyclotomic fields. It is not difficult
to formulate a generalized Kummer conjecture, where instead of the
primes we range over the integers. Goldstein [I0] established that, as
r tends to infinity and ¢ is fixed, we have

r 1
loghi(q") ~ 7 (1 - 5) q"logg.

Myers [30] obtained some results along the lines of Ram Murty and
Petridis [2§]. Fouvry [8] determined the average order of |v,,| (see
Section . Quite likely further results can be obtained, e.g., it is
perhaps possible to find explicit composite integers m for which ~,, < 0.

6.3. Strengthening the analogy (Moree and Saad Eddin [26]). Com-
parison of and suggests that one can expect an even closer
analogy between r(¢q) and the difference

L'(1,x
(30) Vo=V =Y Iix) >,
~ L(1,x)

x(—=1)=-1

which results on subtracting from . In particular, it is to be
expected that v, —~;F will display, like logr(g), a more symmetric
behaviour around the origin than -, does. Also recall that r(¢) and
Yq — 74 both appear in the Taylor series (14)).

Acknowledgment. I like to thank James Maynard for pointing out that
one can take C' = 1/246 in Challenge . Furthermore, I am grateful to
Alexandru Ciolan, Sumaia Saad Eddin and Alisa Sedunova for proof-
reading and help with editing an earlier version. Ignazio Longhi and
the referee kindly pointed out some disturbing typos.

The similarity between Kummer’s and Thara’s conjectures was pointed
out by Andrew Granville after a talk given by Kevin Ford on [7]. At
that point the authors of [7] had independently obtained Theorem [1]
but not Granville’s Proposition [T, the latter being precisely the result
used by Granville to unleash the logloglog devil. Once at the loose, it
created havoc also among the Euler-Kronecker constants.
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